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2 1 SIMPLE RANDOM WALKS

1 Simple random walks

1.1 Random walks on graphs

Definition Simple random walk |

Let G = (V, E) be a graph where each vertex has finite degree.
A simple random walk (SRW) is a sequence of vertices (W;);>¢ such that for all z € V' and integers ¢t > 0,
if Wi = x then for all y € V satisfying zy € E,
1
deg()

P(Wip1 =y) =

independently of the previous steps of the walk.

Definition Hitting time and first visit time |

Hitting time: 7, ;= inf{t > 0: W, =z}
First visit time: 7,7 :=inf{t > 1: W, = 2}

Conditioning on starting point |

Po(-) =P(- | Wy = 2)

Definition Escape probability |

For a graph with starting point = and endpoint y, the escape probability is pesc := Py (7, < 7)

1.2 Random walks on Z

Definition Random walk on 7. |

On Z, (Wi)¢>0 can be described as a sum of Bernoulli distributed random variables.

t 3 e
W, = ZXi X, = 1 W!th probabfl!ty 1/2
; —1  with probability 1/2

Proposition |

Let a < 0 < b and = € [a,b] be integers and consider the simple random walk on Z.

T—a a
Po(mp < 7q) = P <Tq) = —
(7o < 7a) b—a o7 < 7a) b—a
Theorem Weak law of large numbersl
If X1,X5,... is a sequence of i.i.d. random variables with finite variance, then
X —
lim P <M > 5) =0
n—oo n

Lemma |

W; has expectation 0 and variance ¢.

Lemma |

lim P(—et < Wy <et) =1

t—o00
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Theorem Central limit theorem

If If X1,X5,... is a sequence of i.i.d. random variables with finite expectation and variance, then

?: Xi— n d
Zl\/_T’u—»/V(O,l)

Proposition |

Proposition Reflection princip/el

For any random walk on Z, denote

N(a,n) := number of paths of length n starting at 0 and ending at a
M (a,b,n) := number of paths of length n starting at 0 and ending at a that visit b

Then for any 0 < a < b we have
M(a,b,n) = N(2b—a,n)

1.3 Random walks on Z¢

Definition Random walk on 7. |

For the simple random walk (Wt)tZO on Z%, we start at the origin, and

1
P(Wt—Fl:Wtiei):?d ’L:Z,,d

where e; are the basis vectors of Z%.

Definition Recurrent random Wa/kl

(Wi)i>0 is recurrent if P(return to 0) = 1 and transient otherwise.

Lemma |

A simple random walk on Z< is recurrent if and only if E(number of returns to 0) = oo

Definition Lijttle-o notation

fr = 0n(gn) if&—>Oasn—>oo.

Theorem Stirling's formulal

Lemma |

lim P (X ~ Bin <2k, 1) - k) _1
k—o0 2 ™

Theorem Polya’s theorem

(Wi)e>0 on Z% is recurrent if and only if d € {1,2}.
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2 Networks

2.1 Electrical networks

Definition Network |

A network is a graph G = (V, E) with a conductance c(e) > 0 assigned to each edge ¢ € E.

The resistance of an edge is r(e) = ﬁ The conductance of a vertex is c(v) = 3 c(uw).

uwuveE

Definition Harmonic functionl

For a network G = (V, E), a function V — R is harmonic at x if

or equivalently Z clxy)(f(z) — fly)) =0

yxyelR

@) =¥ 1) 528

yxyelR

Definition Voltage |

A voltage on a network G with a # z € V(G) is a function V(G) — R which is harmonic at every z ¢ {a, z}.

Lemma Uniqueness principle |

If G is a connected finite network and f, g are voltages on G such that f(a) = g(a) and f(z) = g(2), then f =g.

Orientation of edges |

We denote the orientation E of edges E by @ or Yy where H/ = g</_x

Definition Flow |

A flow J : B — R is an assignment of values to oriented edges such that
L. J(x) = —J(yt)
2. J(x) =), J(Z) = 0 for all vertices = ¢ {a, 2}

We call J(z) the divergence of . We call J(a) the source and J(z) the sink of a network.

Lemma |

Z J(x)=J(a)+J(z)=0

zeV(Q)

Definition Flow strength |

The strength of a flow J is || J|| := J(a). A unit flow is a flow of strength 1.

Definition Current f/owl

Given a voltage W on a network G the current flow [ is defined using Ohm's law:

Note: I satisfies the definition of a flow.

Definition Effective resistance

The effective resistance for a voltage W and the corresponding current flow I is

W(a) - W(2)

Ref :=
) 1]

Lemma |

Refr does not depend on the choice of voltage.
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2.2 Random walks on networks

Definition Random walk on a networkl

For a random walk (W});>¢ on a network, we have

cw) it yp € E
P(Wt+1 = | W, = U) — ) c(v) IT uv .
0 otherwise
Lemma |
If G is a connected finite network, a,z € V(G) and a # z, then
f(z) =Py(7, < 74) is harmonic for all x ¢ {a, z} fla)=0 f(z) =1

Theorem |

On a network, the escape probability pes. satisfies

1

Pesc = 7 ~F5
C(G,) 0 Reff

2.3 Simplifying the network

Simplification laws |

The following three operations do not change the effective resistance Ref:

Series law

w
u
v w
u ri+nr
r . r < é

Parallel law

n
rn

Gluing vertices of equal voltage

Note: Loops (edges from u to u) can be discarded without affecting Res.




2.4 Rayleigh’s monotonicity law 6 2 NETWORKS

Definition Network automorphism |

An automorphism of a network G is a bijection ¢ : V(G) — V(G) such that uv is an edge if and only if ¢(u)p(v)
is an edge, and moreover c(uv) = c(¢(u)p(v)) for all edges uv.

Lemma Equal voltage criterionl

Let G be a network with distinguished nodes a, z and let ¢ be an automorphism such that ¢(a) = a and ¢(z) = z.
Then W (u) = W (v) for all pairs of vertices u,v such that ¢(u) = v.

2.4 Rayleigh’s monotonicity law

Lemma |

Let f: V(G) — R be an arbitrary function and let .J be a flow from a to z. Then

Y (f(@) = f) - J@) = 2(f(a) = F()III.

z,yeV(G)

Definition Energy of a flow |

The energy of a flow J is )
E(T) =5 ) (J(@)" - r(zy)

z,y

Theorem Thompson's principle |

Ress = inf{&(J) : J a flow from a to z with || J|| = 1}

and the unique minimizer is the current flow of strength one.

Theorem Rayleigh’s monotonicity law |

Let (r(e))eccr and (r'(€))ccr be assignments of resistances such that r(e) < r/(e), and fix a,z € V.
Then the corresponding effective resistance satisfies

Rer < Rl

Corollary |

e Cutting law: Removing an edge from G will not decrease Re.

e Shorting law: Gluing two vertices in G (regardless of voltage) will not increase Ress.

Definition Graph distance |

The graph distance of two vertices is the number of edges in the shortest path between them. We define

Sy, = {vertices with graph distance n from the origin}

Note |

For any graph where S,, grows at most linearly, the simple random walk starting at the origin is recurrent.
This can be proven analogously to the proof of Polya’s theorem with d = 2 at the end of Lecture 4.

Transience of a simple random walk can be proven by embedding a k-regular tree into the graph.
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3 Markov chains

3.1 Markov chains

Definition Directed graph |

A directed graph D = (V, A) consists of a set of vertices V' and a set of arrows (or arcs) A CV x V.

Definition Markov chain |

A Markov chain M is a sequence of random variables X, X1, X5, ... on a (finite) state space S = {1,...,n}.
We define transition probabilities for all i,j € S:

P(Xt+1:j|Xt:i):Pij€[0,1]

The transition probability is independent of ¢ and for all i € S we have >
Markov chains have the following properties:

jesPij =1

1. Markov property: the state at time t + 1 depends only on the state at time t.

for all ¢ > 07 Z’()7 500 ,it+1 P($t+1 = Z.t+1 | XO = 7;0, ey Xt = Zt) = ]P)(Xt+1 = it+1 | Xt = Zt)

2. Time homogeneity:
P(@r =7 | Xe =i) =P(z1 =j | Xo =1)

Any Markov chain is equivalent to a random walk on a weighted directed graph D, where (¢, j) € A <= P;; > 0.

Notation |

Let i € .S, A an event and v a probability distribution. Then we denote
Pi(A) =P(A | Xo =) P, (A) = P(A | Xo 2 v)

We also define the hitting time and first visit time in the same way as before.

Definition Stochastic matrix |

A stochastic matrix is a square matrix with nonnegative elements such that its rows sum up to 1.
We can collect the values of P;; of a Markov chain in a stochastic matrix P called a transition matrix.

Lemma |

For every t > 0 and 4,j € S, we have P;(X; = j) = P

3.2 Stationary distributions

Definition Stationary distribution |

A distribution 7 on S is stationary if 7 = 7wP.

Lemma |

If there exists a state i such that E;(7;") < oo, then 7 = (1, ..., m,) with

E;|{visits to j before 7;"}|
T, =
J El(T-i—)

3

Definition /rreducible Markov chain

A Markov chain is irreducible if from every i € S we can reach every j # ¢ € S in one or more steps.

Lemma |

If a Markov chain is irreducible, then E;(7;") < oo for all i € S.

Lemma |

If a Markov chain is irreducible, then there is precisely one stationary distribution.
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!

Corollary

If a Markov chain is irreducible, then its unique stationary distribution satisfies

3.3 Periodicity

Theorem |

For all a1,...,a, € N, there exist z1,...,z, € Z such that ged(ay,...,an) = a121 + - + anZnp.

Definition |

A+A:={a+b:abe A}

Theorem |

If A C Nis nonempty, A+ A C A, and ged(A) =1, then there exists N € N such that

{N,N+1,N+2,...}CA

Lemma |

Consider a Markov chain with state space S and transition matrix P, and define
A, ={t>1:P >0}
If the Markov chain is irreducible, then for all 7,5 € S

ged(4;) = ged(4;)

Definition Period |

The period of an irreducible Markov chain is ged(A;) where A; = {t > 1: P}, > 0}
An irreducible Markov chain is aperiodic if its period is 1.

Theorem |

If a Markov chain is irreducible and aperiodic, then there exists ty such that

P} >0 forallt>tg,ijes

3.4 Convergence

Definition Total variational distance |

Let X,Y be random variables on a finite state space S. The total variational distance of X and Y is

dry(X,Y) = max|P(X € 4) ~ P(Y € 4)|

Theorem Markov chain convergence theoreml

Consider an irreducible and aperiodic Markov chain on a state space S with stationary distribution 7.
Then there exists 0 < a < 1 such that for all initial distributions @ on S,

dry (7, uP') < ot
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Lemma |

drv(X,Y) = 3 3 [P(X = 2) ~ B(Y = 2)
z€S

Definition Coupling of random variab/esl

Let u, v be probability distributions on S.
A coupling of u, v is a random vector (X,Y) € S x S such that X has distribution x and Y has distribution v.

Lemma |

If 1, v are distributions on S, then

dry(p,v) =min{P(X #Y): (X,Y) is a coupling of y and v}

3.5 Some additional tricks

Definition Lazy Markov chain |

For a periodic Markov chain with transition matrix P, we define the lazy Markov chain with transition matrix

Q=3+P)

Definition Essential class

We write ¢+ — 7 if it is possible to move from i to j in zero or more steps.

States 7 and j communicate, denoted i <> j, if i — j and j — 4.

A state i is an essential state if i <> j for every j such that ¢ — j. A state that is not essential is inessential.
An essential class is an equivalence class under <+ of which every state is essential.

Definition Detailed balance equations

A distribution p on S satisfies the detailed balance equations if for all 4,5 € 5,

pilPij = p; Pj;

Lemma |

If 11 satisfies the detailed balance equations then p is stationary.
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4 Branching processes

4.1 Branching processes

Definition Branching process |

A branching process or Galton-Watson process is defined as follows:
e In generation t = 0, there is a single individual.

This individual has a random number X of children, where X is a random variable taking values in Ny

[ ]

e This process repeats: each individual k in generation ¢ has X ;, children.

e The process ends (dies out) if all individuals in a certain generation ¢ have zero children.

e We say the process survives if it goes on indefinitely and it goes extinct if the process dies out at any point.

Definition Number of individuals |

Zs 1
Zy =1 Zi=> Xi1k
k=1

Regimes |

Let u = E[X].

e If 4 > 1 (supercritical regime) then the expected number of offspring in generation t grows arbitrarily large,
exponentially fast with .

o If 1 < 1 (subcritical regime) then it decreases exponentially fast to zero.

e We call the case ;1 = 1 the critical regime.

4.2 Probability generating functions

Definition Probability generating function |

The probability generating function (PGF) of a random variable X in Ny is

Gz(s) = E[s¥] = i sFP(X = k)
k=0

Lemma Properties of the PGF |

1. G(0) =P(X = 0) and G(1) = 1

G k) (0)
k!

2. P(X =k)=
3. G'(s)= 3 ks"'P(X = k) > 0 and G'(1) = E[X]

k=1
4. G"(s) > 0and G"(1) = E[X (X — 1)] = Var(X) — E[X] + (E[X])?

Theorem |

Provided that 0 < P(X = 0) < 1, we have that P(extinction) is the least nonnegative root of ¢ = G(q).
Moreover, we have that P(extinction) = 1 if and only if p =E[X] <1
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Proposition Properties of Z; |

Given = E[X] and 0% = Var[X], we have
o Gz,(s) =Gx(Gz,_,(s)) =(Gxo---0Gx)(s) (where Gx is composed ¢ times)
o E[Z] = !

ot ifu=1

02.#t—1.(/%) if 1

o Var[Z;] = {

4.3 Duality

Definition Dual branching processl

Consider a branching process with distribution X such that 4 = E[X] > 1.
For the dual branching process, we condition on extinction, and we have random variables X and Z;.

Theorem Duality principle |

P(Zl =21,09 = Zo,..., by = 24 | extinction) = P(Zl =21,00 = 29,...,0; = Zt)

for all ¢ € N and nonnegative integers 21, 2o, . .., 2.

Theorem Duality principle, version 2 |

For all rooted ordered trees T, B
P(T = 7 | extinction) = P(T = 1)

where T is the tree of (Z;);>0 and T is the tree of (Zt)tzo

4.4 Relation to random walks

Notation |

Ztot:ZO+Z1+”' S’I’L:Z(Xl_l)
i=1

where X; are i.i.d. distributed like X.

Lemma |

P(Ziot =n) =P(S, = -1, S1,...,5.-1 > —1) foralln e N

Theorem Otter-Dwass formula |
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5 Martingales

5.1 Conditional expectation

Definition Conditional expectationl

EY | X =a]=) y-P(Y =y|X =2)

ElY | X1,...,X,] = p(Xy,...,X,) is a random variable, satisfying

O(x1,..yxn) =EY | X1 =21,..., X5 = ] forall x1,...,z,

Lemma Tower rule |

EEY | X)) =E(Y)

Proposition Properties of conditional expectation |

1. If A, p are constants, then E(AY + uZ | X1,...,X,) = E(Y | X1,...,X,) + uE(Z | X1,...,X,)
2. E[g(X1,..., Xn) Y | X1, .., X = g(X1, ..., X )E(Y | X1, ..., X,)

3. If h: R™ — R™ is a bijection, then E[Y | X1,..., X,] = E[Y | h(X1,..., Xp)]

4. EEQY | X1, o Xnim) | Xi,eo s X)) = E(Y | X1, .., X0)

5.2 Martingales

Definition Martingale |

A sequence of random variables (Y,) is a martingale with respect to the sequence of random variables (X,,) if

E[Yps1 | X1,..., Xa] = Y,

Lemma |

If (Y,) is a martingale w.r.t. (X,,), then
EY; =EY>; = ...

and for all n,m € Ny,
E(Yn—i-m | 2lgaoc 7Xn) = E(Yn | 2lgaoc 7Xn+7n) =Y,

Theorem Chebyshev inequality |

Var(Y)
2

P(]Y —EY| > X) <

Theorem Chernoff bound

If Y ~ Bin(n, p), then
2
P(Y —EY| > \) < 2™ 2=

Lemma |

Suppose X is a random variable with EX = 0 and | X| < 1 almost surely. Then

E[etX] < et2/2




5.3 Convergence 13 5 MARTINGALES

Theorem Azuma-Hoeffding inequality |

Suppose (Y;,) is a martingale w.r.t. (X,,), and (¢, ) is a sequence of constants satisfying
Y, =Y <en almost surely for all n

Then

)\2
P(Y, —Yo| > X)) <2 e
( ol 2 4) < exp( 230 cf)

5.3 Convergence

Theorem Doob-Kolmogorov inequality |

If (Y,,) is a martingale with respect to (X,,), then

EY?2
]P’(max|Y;-|>5>< 0

1<i<n g2

Theorem Martingale convergence theorem |

Let (Y,,) be a martingale with respect to (X,,) satisfying sup,,(E[Y,?]) < cc.
Then there exists a random variable Y such that Y,, — Y almost surely as n — co.

5.4 Applications of martingales

Definition Travelling salesman probleml

Let Py,..., P, be points in the Euclidean plane. We define the length of the shortest tour as

n—1

L(Plv SRR Pn) = Ingn ZHPﬂ(i-‘rl) - Pﬂ(i)” + HPTr(n) - P‘ﬂ'(l)”
1=1

where 7 ranges to all permutations of 1,...,n.

Theorem Beardwood-Halton-Hammersley |

There exists a constant 3, such that if Py,..., P, are i.i.d uniform in [0,1]?,

L(Pla"'apn) P
\/ﬁ n—o00

B
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6 Poisson processes

6.1 Poisson processes

Definition Poisson processl

A Poisson process with intensity A > 0 is a random function ¢ — N(¢) with domain [0, c0) and taking values in
Z>q such that

1. N(0)=0
2. If s <t then N(s) < N(¢)
3. For every t >0, as h \, 0, we have

0 if j < i

. )1 dhto(n) ifj=i
WEHR =T INO=D=1 34 4 o) ifj=i+1
oh) if > i+1

4. If s < t, then N(s) (the number of arrivals in [0, s]) and N (¢) — N(s) (the number of arrivals in (s,t]),
are independent.

Lemma |

If N(t) satisfies the definition of a Poisson process with intensity A, then
N () £ Poi(\t)

for all t € [0, 00).

Corollary |

For every 0 < s < t we have
N(t) — N(s) £ Poi(A(t — s))

Theorem |

A Poisson process with intensity A > 0 satisfies
1. N(A) 4 Poi(A - length(A)) for every finite interval A C [0, c0)
2. If Ay,..., A, are disjoint intervals then N(A;),..., N(A,) are independent random variables.

Note: these properties form an alternative definition for a Poisson process.
This definition can be extended to R? by replacing intervals with boxes and length with volume.

6.2 Interarrival times

Definition Interarrival times |

We can alternatively describe the Poisson process by a strictly increasing sequence (7},) of arrival times.
T, :=inf{t: N(¢t) > i}

We denote the interarrival times by
Xi=T,—Ti

where Ty = 0.

Theorem |

The interarrival times are i.i.d. Exp()) distributed.
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6.3 Transformations

Theorem Thinning theorem |

If &2 is a Poisson process of intensity A and 2 C &2 is constructed by keeping each point of &2 with probability p,
independently of all other points, then 2 is a Poisson process of intensity p\ .

Theorem Superposition theoreml

If &1, P, are independent Poisson processes with intensities A1, Ao respectively,
then &2 := 221 U &, is a Poisson process of intensity A; + As.

Theorem Scaling theorem |

If & is a Poisson proces of intensity A and 2 := @[] where ¢(z) := az with a > 0,
then 2 is a Poisson process of intensity A/a.

7 Brownian motion

Definition Brownian motion |

Brownian motion is a random process (B(t));>¢ satisfying

1. The process has independent increments, that is, for all 0 < t; < --- < t,,, the random variables
B(t;) — B(0), B(t2) — B(t1),...,B(tn) — B(tn-1)

are independent.
2. For every 0 < s < t the increment B(t) — B(s) is .4(0,¢ — s) distributed.
3. Almost surely, the function ¢ — B(t) is continuous.

If B(0) = 0 we speak of standard Brownian motion.

Theorem |

Standard Brownian motion exists.

Proposition |

For every 0 < t; < --- < t,, the random vector

[B(t1),...,Bt)]T £ 4 (0,%)

follows the multivariate normal distribution with covariance matrix ¥ given by ¥;; = min(¢;, ¢;).

7.1 Transformations

Theorem Translation invariancel

If @ > 0 is fixed and B(t) denotes a Brownian motion then the process given by
X(t) :=B(a+t)— B(a))

is a standard Brownian motion.

Theorem Scale invariance |

If a # 0 is fixed and B(t) denotes a standard Brownian motion, then the process given by

X(t) :=a" ' B(a*)

is also a standard Brownian motion.
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Theorem Time inversion

If B(t) denotes a standard Brownian motion, then the process given by

X(t) = {g B(1/) ::i 8

is also a standard Brownian motion.

7.2 Properties

Theorem |

Almost surely, for every 0 < a < b, the function ¢t — B(t) is non-monotone on the interval [a, b].

Proposition |

For every fixed s, almost surely, ¢t — B(¢) is not differentiable at s.

Theorem |

Almost surely, t — B(t) is non-differentiable at every t € [0, 0).

Theorem Second arcsine law |

Let B(t) be standard Brownian motion and denote L := max{¢ € [0,1] : B(t) = 0}. Then for all ¢ € [0, 1]

P(L<t)= %arcsin(\/{f)

Theorem Third arcsine law

Let B(t) be standard Brownian motion and denote T := argmax B(t). Then for all ¢ € [0, 1]
t€[0,1]

P(T <t)= 2 arcsin(v/1)

- s

7.3 Brownian motion as a limit

Definition B, |

Consider the symmetric random walk on Z, where X1, Xo,... are i.i.d with P(X; = 1) =P(X; = —-1) = 1/2 and
let S, be the partial sums of X,,. We turn the partial sums into a continuous function by linear interpolation:

S*(t) = Sy + @ = [t]) - (St — S1e))

Now we set S*(nt)
n
B, (t) :=
0="r
Definition Metric for random functionsl
[flloo == sup [f(#)] dist(f, ) = If = glloo

te0,1]

Proposition |

If B, is as above and B is standard Brownian motion, then there exist couplings of B,,, B such that

n—oo

P(dist(B,,B) >¢) —— 0
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Theorem Skorokhod embedding theoreml

Let X be a random variable with E[X] = 0 and E[X?] < cc.
Then there exists a random time 7" such that

1. For each constant t € [0, 00) the event {T' =t} depends only on (B(s))s<¢

2. B(T) < X

Theorem Donsker’s invariance theoreml

Suppose that X;, Xs,... are i.i.d with E[X;] =0, Var(X;) = 1 and define B,, as above.
Then there is a series of couplings such that

n— oo

P(dist(By, B) > ) 2=>% 0

for all e > 0.
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extinct, [10] subcritical regime, [10]

supercritical regime, [10]
Superposition theorem,
survives, [10]

First visit time, 2]
flow,

Galton-Watson process,

: P i Thinning theorem,
Gluing, . .
Third arcsine law, [16]

graph distance, L
d Thompson's principle, [f]

harmonic, Time homogeneity,
Hitting time, 2] Time inversion, [16]

total variational distance,
inessential, [9] Tower rule,
interarrival times, transient, [3
irreducible, transition matrix,

transition probabilities,
Translation invariance,
Travelling salesman problem, [13]

lazy Markov chain, [9]
length of the shortest tour, @

Markov chain,

Markov chain convergence theorem, [§] Un-iqueness principle,
Markov property, unit flow,

martingale, [12]

Martingale convergence theorem, [13] voltage,

network, Weak law of large numbers,
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