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1 Simple random walks

1.1 Random walks on graphs

Definition Simple random walk

Let G = (V,E) be a graph where each vertex has finite degree.
A simple random walk (SRW) is a sequence of vertices (Wt)t≥0 such that for all x ∈ V and integers t ≥ 0,
if Wt = x then for all y ∈ V satisfying xy ∈ E,

P(Wt+1 = y) =
1

deg(x)

independently of the previous steps of the walk.

Definition Hitting time and first visit time

Hitting time: τx := inf{t ≥ 0 : Wt = x}
First visit time: τ+x := inf{t ≥ 1 : Wt = x}

Conditioning on starting point

Px( · ) = P( · |W0 = x)

Definition Escape probability

For a graph with starting point x and endpoint y, the escape probability is pesc := Px(τy < τx)

1.2 Random walks on Z
Definition Random walk on Z
On Z, (Wt)t≥0 can be described as a sum of Bernoulli distributed random variables.

Wt =

t∑
i=1

Xi Xi =

{
1 with probability 1/2

−1 with probability 1/2

Proposition

Let a < 0 < b and x ∈ [a, b] be integers and consider the simple random walk on Z.

Px(τb < τa) =
x− a

b− a
P0(τb < τa) = −

a

b− a

Theorem Weak law of large numbers

If X1, X2, . . . is a sequence of i.i.d. random variables with finite variance, then

lim
n→∞

P
(
|
∑n

i=1 Xi − µn|
n

> ε

)
= 0

Lemma

Wt has expectation 0 and variance t.

Lemma

lim
t→∞

P(−εt < Wt < εt) = 1
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Theorem Central limit theorem

If If X1, X2, . . . is a sequence of i.i.d. random variables with finite expectation and variance, then∑n
i=1 Xi − µn√

nσ

d−→ N (0, 1)

Proposition

Wt
d−→ N (0, t)

Proposition Reflection principle

For any random walk on Z, denote

N(a, n) := number of paths of length n starting at 0 and ending at a

M(a, b, n) := number of paths of length n starting at 0 and ending at a that visit b

Then for any 0 < a < b we have
M(a, b, n) = N(2b− a, n)

1.3 Random walks on Zd

Definition Random walk on Zd

For the simple random walk (Wt)t≥0 on Zd, we start at the origin, and

P(Wt+1 = Wt ± ei) =
1

2d
i = i, . . . , d

where ei are the basis vectors of Zd.

Definition Recurrent random walk

(Wt)t≥0 is recurrent if P(return to 0) = 1 and transient otherwise.

Lemma

A simple random walk on Zd is recurrent if and only if E(number of returns to 0) =∞

Definition Little-o notation

fn = on(gn) if
fn
gn
→ 0 as n→∞.

Theorem Stirling’s formula

n! = (1 + on(1))
√
2πn

(n
e

)n

Lemma

lim
k→∞

P
(
X ∼ Bin

(
2k,

1

2

)
= k

)
=

1

π

Theorem Pòlya’s theorem

(Wt)t≥0 on Zd is recurrent if and only if d ∈ {1, 2}.
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2 Networks

2.1 Electrical networks

Definition Network

A network is a graph G = (V,E) with a conductance c(e) > 0 assigned to each edge e ∈ E.
The resistance of an edge is r(e) = 1

c(e) . The conductance of a vertex is c(v) =
∑

u:uv∈E

c(uv).

Definition Harmonic function

For a network G = (V,E), a function V → R is harmonic at x if

f(x) =
∑

y:xy∈E

f(y) · c(xy)
c(x)

or equivalently
∑

y:xy∈E

c(xy)(f(x)− f(y)) = 0

Definition Voltage

A voltage on a network G with a ̸= z ∈ V (G) is a function V (G)→ R which is harmonic at every x /∈ {a, z}.

Lemma Uniqueness principle

If G is a connected finite network and f, g are voltages on G such that f(a) = g(a) and f(z) = g(z), then f = g.

Orientation of edges

We denote the orientation E⃗ of edges E by −→xy or ←−xy, where −→xy =←−yx.

Definition Flow

A flow J :
−→
E → R is an assignment of values to oriented edges such that

1. J(−→xy) = −J(−→yx)

2. J(x) :=
∑

y J(
−→xy) = 0 for all vertices x /∈ {a, z}

We call J(x) the divergence of x. We call J(a) the source and J(z) the sink of a network.

Lemma ∑
x∈V (G)

J(x) = J(a) + J(z) = 0

Definition Flow strength

The strength of a flow J is ∥J∥ := J(a). A unit flow is a flow of strength 1.

Definition Current flow

Given a voltage W on a network G the current flow I is defined using Ohm’s law:

I(−→xy) := W (x)−W (y)

r(xy)

Note: I satisfies the definition of a flow.

Definition Effective resistance

The effective resistance for a voltage W and the corresponding current flow I is

Reff :=
W (a)−W (z)

∥I∥

Lemma

Reff does not depend on the choice of voltage.
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2.2 Random walks on networks

Definition Random walk on a network

For a random walk (Wt)t≥0 on a network, we have

P(Wt+1 = u |Wt = v) =

{
c(uv)
c(v) if uv ∈ E

0 otherwise

Lemma

If G is a connected finite network, a, z ∈ V (G) and a ̸= z, then

f(x) = Px(τz < τa) is harmonic for all x /∈ {a, z} f(a) = 0 f(z) = 1

Theorem

On a network, the escape probability pesc satisfies

pesc =
1

c(a) ·Reff

2.3 Simplifying the network

Simplification laws

The following three operations do not change the effective resistance Reff:

Series law

Parallel law

Gluing vertices of equal voltage

Note: Loops (edges from u to u) can be discarded without affecting Reff.
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Definition Network automorphism

An automorphism of a network G is a bijection φ : V (G)→ V (G) such that uv is an edge if and only if φ(u)φ(v)
is an edge, and moreover c(uv) = c(φ(u)φ(v)) for all edges uv.

Lemma Equal voltage criterion

Let G be a network with distinguished nodes a, z and let φ be an automorphism such that φ(a) = a and φ(z) = z.
Then W (u) = W (v) for all pairs of vertices u, v such that φ(u) = v.

2.4 Rayleigh’s monotonicity law

Lemma

Let f : V (G)→ R be an arbitrary function and let J be a flow from a to z. Then∑
x,y∈V (G)

(f(x)− f(y)) · J(−→xy) = 2(f(a)− f(z))∥J∥.

Definition Energy of a flow

The energy of a flow J is

E(J) := 1

2

∑
x,y

(J(−→xy))2 · r(xy)

Theorem Thompson’s principle

Reff = inf{E(J) : J a flow from a to z with ∥J∥ = 1}

and the unique minimizer is the current flow of strength one.

Theorem Rayleigh’s monotonicity law

Let (r(e))e∈E and (r′(e))e∈E be assignments of resistances such that r(e) ≤ r′(e), and fix a, z ∈ V .
Then the corresponding effective resistance satisfies

Reff ≤ R′
eff

Corollary

• Cutting law: Removing an edge from G will not decrease Reff.

• Shorting law: Gluing two vertices in G (regardless of voltage) will not increase Reff.

Definition Graph distance

The graph distance of two vertices is the number of edges in the shortest path between them. We define

Sn = {vertices with graph distance n from the origin}

Note

For any graph where Sn grows at most linearly, the simple random walk starting at the origin is recurrent.
This can be proven analogously to the proof of Pòlya’s theorem with d = 2 at the end of Lecture 4.

Transience of a simple random walk can be proven by embedding a k-regular tree into the graph.
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3 Markov chains

3.1 Markov chains

Definition Directed graph

A directed graph D = (V,A) consists of a set of vertices V and a set of arrows (or arcs) A ⊂ V × V .

Definition Markov chain

A Markov chain M is a sequence of random variables X0, X1, X2, . . . on a (finite) state space S = {1, . . . , n}.
We define transition probabilities for all i, j ∈ S:

P(Xt+1 = j | Xt = i) = Pij ∈ [0, 1]

The transition probability is independent of t and for all i ∈ S we have
∑

j∈S Pij = 1
Markov chains have the following properties:

1. Markov property: the state at time t + 1 depends only on the state at time t.

for all t ≥ 0, i0, . . . , it+1 P(xt+1 = it+1 | X0 = i0, . . . , Xt = it) = P(Xt+1 = it+1 | Xt = it)

2. Time homogeneity:
P(xt+1 = j | Xt = i) = P(x1 = j | X0 = i)

Any Markov chain is equivalent to a random walk on a weighted directed graph D, where (i, j) ∈ A ⇐⇒ Pij > 0.

Notation

Let i ∈ S, A an event and v a probability distribution. Then we denote

Pi(A) = P(A | X0 = i) Pv(A) = P(A | X0
d
= v)

We also define the hitting time and first visit time in the same way as before.

Definition Stochastic matrix

A stochastic matrix is a square matrix with nonnegative elements such that its rows sum up to 1.
We can collect the values of Pij of a Markov chain in a stochastic matrix P called a transition matrix.

Lemma

For every t ≥ 0 and i, j ∈ S, we have Pi(Xt = j) = P t
ij

3.2 Stationary distributions

Definition Stationary distribution

A distribution π on S is stationary if π = πP .

Lemma

If there exists a state i such that Ei(τ
+
i ) <∞, then π = (π1, . . . , πn) with

πj =
Ei|{visits to j before τ+i }|

Ei(τ
+
i )

Definition Irreducible Markov chain

A Markov chain is irreducible if from every i ∈ S we can reach every j ̸= i ∈ S in one or more steps.

Lemma

If a Markov chain is irreducible, then Ei(τ
+
i ) <∞ for all i ∈ S.

Lemma

If a Markov chain is irreducible, then there is precisely one stationary distribution.
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Corollary

If a Markov chain is irreducible, then its unique stationary distribution satisfies

πi =
1

Ei(τ
+
i )

3.3 Periodicity

Theorem

For all a1, . . . , an ∈ N, there exist x1, . . . , xn ∈ Z such that gcd(a1, . . . , an) = a1x1 + · · ·+ anxn.

Definition

A+A := {a+ b : a, b ∈ A}

Theorem

If A ⊂ N is nonempty, A+A ⊆ A, and gcd(A) = 1, then there exists N ∈ N such that

{N,N + 1, N + 2, . . . } ⊂ A

Lemma

Consider a Markov chain with state space S and transition matrix P , and define

An := {t ≥ 1 : P t
ii > 0}

If the Markov chain is irreducible, then for all i, j ∈ S

gcd(Ai) = gcd(Aj)

Definition Period

The period of an irreducible Markov chain is gcd(A1) where A1 = {t ≥ 1 : P t
11 > 0}

An irreducible Markov chain is aperiodic if its period is 1.

Theorem

If a Markov chain is irreducible and aperiodic, then there exists t0 such that

P t
ij > 0 for all t ≥ t0, i, j ∈ S

3.4 Convergence

Definition Total variational distance

Let X,Y be random variables on a finite state space S. The total variational distance of X and Y is

dTV (X,Y ) = max
A⊆S
|P(X ∈ A)− P(Y ∈ A)|

Theorem Markov chain convergence theorem

Consider an irreducible and aperiodic Markov chain on a state space S with stationary distribution π.
Then there exists 0 ≤ α < 1 such that for all initial distributions µ on S,

dTV (π, µP
t) ≤ αt
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Lemma

dTV (X,Y ) =
1

2

∑
x∈S

|P(X = x)− P(Y = x)|

Definition Coupling of random variables

Let µ, ν be probability distributions on S.
A coupling of µ, ν is a random vector (X,Y ) ∈ S × S such that X has distribution µ and Y has distribution ν.

Lemma

If µ, ν are distributions on S, then

dTV (µ, ν) = min{P(X ̸= Y ) : (X,Y ) is a coupling of µ and ν}

3.5 Some additional tricks

Definition Lazy Markov chain

For a periodic Markov chain with transition matrix P , we define the lazy Markov chain with transition matrix

Q =
1

2
(I + P )

Definition Essential class

We write i→ j if it is possible to move from i to j in zero or more steps.
States i and j communicate, denoted i↔ j, if i→ j and j → i.
A state i is an essential state if i↔ j for every j such that i→ j. A state that is not essential is inessential.
An essential class is an equivalence class under ↔ of which every state is essential.

Definition Detailed balance equations

A distribution µ on S satisfies the detailed balance equations if for all i, j ∈ S,

µiPij = µjPji

Lemma

If µ satisfies the detailed balance equations then µ is stationary.
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4 Branching processes

4.1 Branching processes

Definition Branching process

A branching process or Galton-Watson process is defined as follows:

• In generation t = 0, there is a single individual.

• This individual has a random number X of children, where X is a random variable taking values in N0

• This process repeats: each individual k in generation t has Xt,k children.

• The process ends (dies out) if all individuals in a certain generation t have zero children.

• We say the process survives if it goes on indefinitely and it goes extinct if the process dies out at any point.

Definition Number of individuals

Z0 = 1 Zt =

Zt−1∑
k=1

Xt−1,k

Regimes

Let µ = E[X].

• If µ > 1 (supercritical regime) then the expected number of offspring in generation t grows arbitrarily large,
exponentially fast with t.

• If µ < 1 (subcritical regime) then it decreases exponentially fast to zero.

• We call the case µ = 1 the critical regime.

4.2 Probability generating functions

Definition Probability generating function

The probability generating function (PGF) of a random variable X in N0 is

Gx(s) = E[sX ] =

∞∑
k=0

skP(X = k)

Lemma Properties of the PGF

1. G(0) = P(X = 0) and G(1) = 1

2. P(X = k) =
G(k)(0)

k!

3. G′(s) =
∞∑
k=1

ksk−1P(X = k) ≥ 0 and G′(1) = E[X]

4. G′′(s) ≥ 0 and G′′(1) = E[X(X − 1)] = Var(X)− E[X] + (E[X])2

Theorem

Provided that 0 < P(X = 0) < 1, we have that P(extinction) is the least nonnegative root of q = G(q).
Moreover, we have that P(extinction) = 1 if and only if µ = E[X] ≤ 1
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Proposition Properties of Zt

Given µ = E[X] and σ2 = Var[X], we have

• GZt
(s) = GX(GZt−1

(s)) = (GX ◦ · · · ◦GX)(s) (where GX is composed t times)

• E[Zt] = µt

• Var[Zt] =

{
σ2 · t if µ = 1

σ2 · µt−1 ·
(

µt−1
µ−1

)
if µ ̸= 1

4.3 Duality

Definition Dual branching process

Consider a branching process with distribution X such that µ = E[X] > 1.

For the dual branching process, we condition on extinction, and we have random variables X̃ and Z̃t.

Theorem Duality principle

P
(
Z1 = z1, Z2 = z2, . . . , Zt = zt | extinction

)
= P

(
Z̃1 = z1, Z̃2 = z2, . . . , Z̃t = zt

)
for all t ∈ N and nonnegative integers z1, z2, . . . , zt.

Theorem Duality principle, version 2

For all rooted ordered trees T ,
P(T = τ | extinction) = P(T̃ = τ)

where T is the tree of (Zt)t≥0 and T̃ is the tree of (Z̃t)t≥0

4.4 Relation to random walks

Notation

Ztot = Z0 + Z1 + · · · Sn =

n∑
i=1

(Xi − 1)

where Xi are i.i.d. distributed like X.

Lemma

P(Ztot = n) = P(Sn = −1, S1, . . . , Sn−1 > −1) for all n ∈ N

Theorem Otter-Dwass formula

P(Ztot = n) =
1

n
· P(Sn = 1)
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5 Martingales

5.1 Conditional expectation

Definition Conditional expectation

E[Y | X = x] =
∑
y

y · P(Y = y|X = x)

E[Y | X1, . . . , Xn] = φ(X1, . . . , Xn) is a random variable, satisfying

φ(x1, . . . , xn) = E[Y | X1 = x1, . . . , Xn = xn] for all x1, . . . , xn

Lemma Tower rule

E(E(Y | X)) = E(Y )

Proposition Properties of conditional expectation

1. If λ, µ are constants, then E(λY + µZ | X1, . . . , Xn) = λE(Y | X1, . . . , Xn) + µE(Z | X1, . . . , Xn)

2. E[g(X1, . . . , Xn) · Y | X1, . . . , Xn = g(X1, . . . , Xn)E(Y | X1, . . . , Xn)

3. If h : Rn → Rn is a bijection, then E[Y | X1, . . . , Xn] = E[Y | h(X1, . . . , Xn)]

4. E(E(Y | X1, . . . , Xn+m) | X1, . . . , Xn) = E(Y | X1, . . . , Xn)

5.2 Martingales

Definition Martingale

A sequence of random variables (Yn) is a martingale with respect to the sequence of random variables (Xn) if

E[Yn+1 | X1, . . . , Xn] = Yn

Lemma

If (Yn) is a martingale w.r.t. (Xn), then
EY1 = EY2 = . . .

and for all n,m ∈ N0,
E(Yn+m | X1, . . . , Xn) = E(Yn | X1, . . . , Xn+m) = Yn

Theorem Chebyshev inequality

P
(
|Y − EY | ≥ λ

)
≤ Var(Y )

λ2

Theorem Chernoff bound

If Y ∼ Bin(n, p), then

P(|Y − EY | > λ) ≤ 2e−
λ2

2n

Lemma

Suppose X is a random variable with EX = 0 and |X| ≤ 1 almost surely. Then

E[etX ] ≤ et
2/2
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Theorem Azuma-Hoeffding inequality

Suppose (Yn) is a martingale w.r.t. (Xn), and (cn) is a sequence of constants satisfying

|Yn − Yn−1| ≤ cn almost surely for all n

Then

P(|Yn − Y0| ≥ λ) ≤ 2 exp

(
− λ2

2
∑n

i=1 c
2
i

)

5.3 Convergence

Theorem Doob-Kolmogorov inequality

If (Yn) is a martingale with respect to (Xn), then

P
(

max
1≤i≤n

|Yi| ≥ ε

)
≤ EY 2

n

ε2

Theorem Martingale convergence theorem

Let (Yn) be a martingale with respect to (Xn) satisfying supn(E[Y 2
n ]) <∞.

Then there exists a random variable Y such that Yn → Y almost surely as n→∞.

5.4 Applications of martingales

Definition Travelling salesman problem

Let P1, . . . , Pn be points in the Euclidean plane. We define the length of the shortest tour as

L(P1, . . . , Pn) := min
π

n−1∑
i=1

∥Pπ(i+1) − Pπ(i)∥+ ∥Pπ(n) − Pπ(1)∥

where π ranges to all permutations of 1, . . . , n.

Theorem Beardwood-Halton-Hammersley

There exists a constant β, such that if P1, . . . , Pn are i.i.d uniform in [0, 1]2,

L(P1, . . . , Pn)√
n

P−−−−→
n→∞

β
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6 Poisson processes

6.1 Poisson processes

Definition Poisson process

A Poisson process with intensity λ > 0 is a random function t → N(t) with domain [0,∞) and taking values in
Z≥0 such that

1. N(0) = 0

2. If s ≤ t then N(s) ≤ N(t)

3. For every t ≥ 0, as h↘ 0, we have

P(N(t+ h) = j | N(t) = i) =


0 if j < i

1− λh+ o(h) if j = i

λh+ o(h) if j = i+ 1

o(h) if j > i+ 1

4. If s < t, then N(s) (the number of arrivals in [0, s]) and N(t)−N(s) (the number of arrivals in (s, t]),
are independent.

Lemma

If N(t) satisfies the definition of a Poisson process with intensity λ, then

N(t)
d
= Poi(λt)

for all t ∈ [0,∞).

Corollary

For every 0 ≤ s < t we have

N(t)−N(s)
d
= Poi(λ(t− s))

Theorem

A Poisson process with intensity λ > 0 satisfies

1. N(A)
d
= Poi(λ · length(A)) for every finite interval A ⊆ [0,∞)

2. If A1, . . . , An are disjoint intervals then N(A1), . . . , N(An) are independent random variables.

Note: these properties form an alternative definition for a Poisson process.
This definition can be extended to Rd by replacing intervals with boxes and length with volume.

6.2 Interarrival times

Definition Interarrival times

We can alternatively describe the Poisson process by a strictly increasing sequence (Tn) of arrival times.

Ti := inf{t : N(t) ≥ i}

We denote the interarrival times by
Xi := Ti − Ti−1

where T0 = 0.

Theorem

The interarrival times are i.i.d. Exp(λ) distributed.
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6.3 Transformations

Theorem Thinning theorem

If P is a Poisson process of intensity λ and Q ⊆P is constructed by keeping each point of P with probability p,
independently of all other points, then Q is a Poisson process of intensity pλ .

Theorem Superposition theorem

If P1,P2 are independent Poisson processes with intensities λ1, λ2 respectively,
then P := P1 ∪P2 is a Poisson process of intensity λ1 + λ2.

Theorem Scaling theorem

If P is a Poisson proces of intensity λ and Q := φ[P] where φ(x) := ax with a > 0,
then Q is a Poisson process of intensity λ/a.

7 Brownian motion

Definition Brownian motion

Brownian motion is a random process (B(t))t≥0 satisfying

1. The process has independent increments, that is, for all 0 < t1 < · · · < tn, the random variables

B(t1)−B(0), B(t2)−B(t1), . . . , B(tn)−B(tn−1)

are independent.

2. For every 0 ≤ s < t the increment B(t)−B(s) is N (0, t− s) distributed.

3. Almost surely, the function t 7→ B(t) is continuous.

If B(0) = 0 we speak of standard Brownian motion.

Theorem

Standard Brownian motion exists.

Proposition

For every 0 < t1 < · · · < tn the random vector

[B(t1), . . . , B(tn)]
T d
= N (0,Σ)

follows the multivariate normal distribution with covariance matrix Σ given by Σij = min(ti, tj).

7.1 Transformations

Theorem Translation invariance

If a ≥ 0 is fixed and B(t) denotes a Brownian motion then the process given by

X(t) := B(a+ t)−B(a))

is a standard Brownian motion.

Theorem Scale invariance

If a ̸= 0 is fixed and B(t) denotes a standard Brownian motion, then the process given by

X(t) := a−1 ·B(a2t)

is also a standard Brownian motion.
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Theorem Time inversion

If B(t) denotes a standard Brownian motion, then the process given by

X(t) :=

{
t ·B(1/t) if t > 0

0 if t = 0

is also a standard Brownian motion.

7.2 Properties

Theorem

Almost surely, for every 0 ≤ a < b, the function t 7→ B(t) is non-monotone on the interval [a, b].

Proposition

For every fixed s, almost surely, t 7→ B(t) is not differentiable at s.

Theorem

Almost surely, t 7→ B(t) is non-differentiable at every t ∈ [0,∞).

Theorem Second arcsine law

Let B(t) be standard Brownian motion and denote L := max{t ∈ [0, 1] : B(t) = 0}. Then for all t ∈ [0, 1]

P(L ≤ t) =
2

π
arcsin(

√
t)

Theorem Third arcsine law

Let B(t) be standard Brownian motion and denote T := argmax
t∈[0,1]

B(t). Then for all t ∈ [0, 1]

P(T ≤ t) =
2

π
arcsin(

√
t)

7.3 Brownian motion as a limit

Definition Bn

Consider the symmetric random walk on Z, where X1, X2, . . . are i.i.d with P(X1 = 1) = P(X1 = −1) = 1/2 and
let Sn be the partial sums of Xn. We turn the partial sums into a continuous function by linear interpolation:

S∗(t) := S⌊t⌋ + (t− ⌊t⌋) · (S⌈t⌉ − S⌊t⌋)

Now we set

Bn(t) :=
S∗(nt)√

n

Definition Metric for random functions

∥f∥∞ := sup
t∈[0,1]

|f(t)| dist(f, g) := ∥f − g∥∞

Proposition

If Bn is as above and B is standard Brownian motion, then there exist couplings of Bn, B such that

P(dist(Bn, B) > ε)
n→∞−−−−→ 0
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Theorem Skorokhod embedding theorem

Let X be a random variable with E[X] = 0 and E[X2] <∞.
Then there exists a random time T such that

1. For each constant t ∈ [0,∞) the event {T = t} depends only on (B(s))S≤t

2. B(T )
d
= X

Theorem Donsker’s invariance theorem

Suppose that X1, X2, . . . are i.i.d with E[X1] = 0, Var(X1) = 1 and define Bn as above.
Then there is a series of couplings such that

P(dist(Bn, B) > ε)
n→∞−−−−→ 0

for all ε > 0.
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